lixiao j ie, guorui, huangjin, zhulin gf en g, tan hon g li, dongen q ian g. a pp licationofartificialneuralnetworktoorbitpredictionofbeidounavi g ationsatellites[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1253-1258. DOI: 10.13203/j .whu g is20130603
Citation: lixiao j ie, guorui, huangjin, zhulin gf en g, tan hon g li, dongen q ian g. a pp licationofartificialneuralnetworktoorbitpredictionofbeidounavi g ationsatellites[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1253-1258. DOI: 10.13203/j .whu g is20130603

a pp licationofartificialneuralnetworktoorbitpredictionofbeidounavi g ationsatellites

  • autonomousorbitdeterminationofsatellitesisimp ortanttoimp rovetheavailabilit yofasatellitenavi g ations y stem,andde p endsonhi g h-p recisionorbitp redictions.theorbitp redictedwithad y namicsmodelhasthep roblemofhi g hdilution.tosolvethisp roblem,amethodisp ro p osedtoimp rovelon g-termorbitp redictionsforbeidousatellitesbasedonanartificialneuralnetwork( ann)model.wedevelo p edanannmodelbasedonthed y namicsmodel ,inordertodeterminethevariationcharacteristicsintheorbitp redictionerrorsb ylearnin gandtrainin ghistoricalorbitp redictionerrors.weusedthisann modeltoimp rovetheaccurac yoforbitp redictionsb yestimatin gandcorrectin gp redictionerrors.formedium-termandlon g-termorbitp redictions,ex p erimentalresultsshowedthatorbitp redictionerrorsafterthea pp licationofthep ro p osedann modelwerelessthanthosebasedonthed y namicmodel.theeffectivenessoftheimp rovementsvarieswithdifferentsatellitesandinitiale p ochs.theerroroforbitp redictionsforthe15-da yp redictionwasreducedto19mfrom318m;and,forthe30-da yp rediction,wasreducedto49mfrom1757m.theimp rovementratiosforthe15-da yand30-da yp redictionswere41%~80% and32%~88%,res p ectivel y.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return