a pp licationofartificialneuralnetworktoorbitpredictionofbeidounavi g ationsatellites
-
Graphical Abstract
-
Abstract
autonomousorbitdeterminationofsatellitesisimp ortanttoimp rovetheavailabilit yofasatellitenavi g ations y stem,andde p endsonhi g h-p recisionorbitp redictions.theorbitp redictedwithad y namicsmodelhasthep roblemofhi g hdilution.tosolvethisp roblem,amethodisp ro p osedtoimp rovelon g-termorbitp redictionsforbeidousatellitesbasedonanartificialneuralnetwork( ann)model.wedevelo p edanannmodelbasedonthed y namicsmodel ,inordertodeterminethevariationcharacteristicsintheorbitp redictionerrorsb ylearnin gandtrainin ghistoricalorbitp redictionerrors.weusedthisann modeltoimp rovetheaccurac yoforbitp redictionsb yestimatin gandcorrectin gp redictionerrors.formedium-termandlon g-termorbitp redictions,ex p erimentalresultsshowedthatorbitp redictionerrorsafterthea pp licationofthep ro p osedann modelwerelessthanthosebasedonthed y namicmodel.theeffectivenessoftheimp rovementsvarieswithdifferentsatellitesandinitiale p ochs.theerroroforbitp redictionsforthe15-da yp redictionwasreducedto19mfrom318m;and,forthe30-da yp rediction,wasreducedto49mfrom1757m.theimp rovementratiosforthe15-da yand30-da yp redictionswere41%~80% and32%~88%,res p ectivel y.
-
-